Inexact Block Coordinate Descent Methods for Symmetric Nonnegative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Inexact block coordinate descent methods with application to the nonnegative matrix factorization
This work is concerned with the cyclic block coordinate descent method, or nonlinear Gauss-Seidel method, where the solution of an optimization problem is achieved by partitioning the variables in blocks and successively minimizing with respect to each block. The properties of the objective function that guarantee the convergence of such alternating scheme have been widely investigated in the l...
متن کاملDID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملDescent methods for Nonnegative Matrix Factorization
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting...
متن کاملSymmetric Nonnegative Matrix Factorization for Graph Clustering
Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...
متن کاملOn Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices
Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2017
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2017.2731321